
What if Hardware is Untrusted?
A Study of the Hardware Double Fetch Problem in Linux Kernel

Kai Lu, Pengfei Wang, Gen Li, Xu Zhou
National University of Defense Technology
pfwang@nudt.edu.cn, wpengfeinudt@gmail.com

Abstract
The double fetch problem occurs when the data is maliciously changed between two kernel reads of suppos-

edly the same data, which can cause serious security-related problems in the kernel. Previous research focused
on the double fetches between the kernel and user applications. In this paper, we present the first dedicated study
of the double fetch problem in the I/O memory between the kernel and peripheral devices (aka. the Hardware
Double Fetch). We proposed a static pattern-matching approach to identify the hardware double fetches from the
Linux kernel. Our approach can analyze the entire kernel including all drivers without relying on the corresponding
hardware. We identified 361 hardware double fetches, including 4 double-fetch vulnerabilities, which have been
confirmed and fixed by the maintainers as a result of our report.

Introduction
The hardware-based attacks in recent years have placed attention on peripheral devices. The USB
autoplay attack enables attackers to run executables by simply plugging a compromised USB device
in the computer. The BadUSB from Blackhat 2014 performed attacks by writing malicious code onto
USB control chips (i.e. firmware), which brought the risks from what the devices carry to the core
of how they work. The underlying issue is the inability to guarantee and verify the functionality and
integrity of the connected devices. With such a compromised hardware, attackers could completely
take over a PC, invisibly alter files installed from the memory stick, or even redirect the users internet
traffic, all without being detected.

“Double fetch” was named by Fermin J. Serna. It occurs when the data is unexpectedly changed
between two kernel reads of supposedly the same data, which can cause security problems such as
buffer overflows, information leakage, and system crashes. Previous research focused on the double
fetches between the kernel and user applications, in which the data is changed by a concurrently run-
ning user thread under race conditions. However, a double fetch problem can also occur in the I/O
memory between the kernel and peripheral devices, aka. the Hardware Double Fetch. In this study,
we present the first dedicated work on this problem, which provides a new perspective to the double
fetch problem by increasing the scope to include peripheral devices.

Motivation
Operating systems control peripheral devices by reading from and writing to the device registers via
memory-mapped I/O. Due to the absent of effective validation of the attached hardware, compro-
mised hardware could flip the data between two reads of the “same” I/O memory data.

Registers

RAM

Peripheral

Device

Memory-

mapped IO

Kernel

Function

Data in the

I/O memory

First fetch to

verify

Second fetch

to use
Kernel

Peripheral

Device

Time Window

Unexpected

data change

from the device

Figure 1: Illustration of How A Hardware Double Fetch Happens

As Figure 1 shows, a hardware double fetch problem occurs when the kernel reads the “same” I/O
memory data twice, the first time to verify it and the second time to use it, assuming the data is un-
changed. However, since the driver is unable to fully validate the attached hardware, compromised
hardware could perform malicious data change between the two reads, causing data inconsistency for
the kernel functioning. When the tampered data is related to memory accessing (e.g. message length
indicators or queue pointers), security problem can be caused.

The hardware double fetch problem is novel, because the involvement of hardware makes a hard-
ware double fetch different from the traditional double fetch in the following aspects:

• Across different system boundaries. A traditional double fetch occurs between the kernel and
user applications, while a hardware double fetch occurs between the kernel and peripheral devices,
which makes it a novel problem that no dedicated research was conducted on before.

• Prior approaches are not workable. Dynamic analysis adopted by prior traditional double fetch
research relies on corresponding hardware to execute the program, and it is infeasible to have all the
hardware and architectures at one time to conduct a thorough analysis of the entire kernel including
all the drivers.

• I/O memory has different sources. Both device registers (including status registers, configure
registers, and data registers) and device memory are mapped to I/O memory with consecutive ad-
dresses. Different data source has different functionality and thus different features (e.g. limited
register bitwidth causes Linear Reads1).

• Data change in the I/O memory. The peripheral data in the I/O memory changes with the running
status of the device, which is different from the regular memory whose data does not change.

Static Pattern-matching Approach
We proposed a static pattern-matching approach to identify the hardware double fetches in the Linux
kernel. As is shown in Figure 2, the whole procedure of our approach is divided into four stages.

• Identify: Identify candidates based on the basic pattern of double fetch, i.e. the consecutive
invocations of wrapper functions2 reading from the same I/O memory address in the same context.

• Switch: Adopt a unified method by using one function to represent other similar wrapper functions,
which dramatically reduces the combinatorial situations we need to match.

• Refine: Improve the precision by take into consideration of factors such as interleaved write,
pointer aliasing, and potential pointer change.

• Prune: Remove cases that cannot cause double-fetch bugs, such as linear reads, not double-used,
and unused reads.

Source

FilesSource

Files
Identify

1. Read wrapper

functions.

2. Two read from

the same address.

Source

Files
Hardware

double

fetches

1. No writes between

the two reads.

2. No pointer change.

3. Pointer aliasing.

Switch and unify

the wrapper names.

Switch Refine Prune

1. Remove linear reads.

2. Remove not double-used

reads.

3. Remove unused reads.

Figure 2: Overview of the Static Pattern-Matching Approach

Our approach is implemented based on the Coccinelle matching engine. The implementation is
about 2.3 KLOC. We have made it publicly available online (https://github.com/wpengfei/hardware df),
hoping it can be useful for future study.

Results & Findings

Table 1: Identified Hardware Double Fetches Results

Types Categories Occurrences
&Percentage

True
Bugs

Status Regs

Common Check 59 (16.3%) 0
Loop Check 80 (22.2%) 0
Wait Check 81 (22.4%) 0
Stable Check 18 (5.0%) 0

Configure Regs Configure Check 29 (8.0%) 0
Data Regs Check and Use 68 (18.8%) 3
Device Mem Block Check 1 (0.3%) 1

Special
Flush Write 17 (4.7%) 0
Double Valid 6 (1.7%) 0
Delay 2 (0.6%) 0

Total – 361 (100%) 4

We applied our approach to Linux
kernel-4.10.1, which was the newest
version when the experiment was
conducted. The automatic pattern-
matching process took approximately
28 minutes and we got 361 occur-
rences of hardware double fetches (Ta-
ble 1) from 178 candidate files out of
42,417 source files (.c or .h files) of the
entire Linux kernel.

Then we manually reviewed these
files to categorize the patterns and iden-
tify buggy cases. We analyzed each
category with case studies to discuss
the possibility of causing bugs. We re-
ported the identified buggy cases to the

kernel maintainers who made the final confirmation.
Based on the investigation of the results, we have the following findings:

• Hardware double fetches truly exist in the I/O memory. The occurrences range from all three types
of device registers to the device memory.

• Hardware double fetches can cause bugs or even vulnerabilities (we identifed 4 double-fetch vul-
nerabilities (listed in Table 2), which have never been found in the wild before.

• Status registers committed most of the identified hardware double fetches (65.9%, 238/361), but
data registers are more likely to cause buggy situations (we found three) as they usually hold
critical data related to memory accessing, such as message length variables and queue pointers.

• Configure registers are relatively safe as the kernel directs such registers rather than relying on
them, thus the corrupted data from device configure registers can hardly harm the kernel.

• Device memory introduces the least hardware double fetches (only one) because double-fetching
large blocks of data is usually avoided by developers for the concern of efficiency.

Table 2: Description of Identified Double-Fetch Vulnerabilities
ID & File Description
CVE- 2017- 8831
Linux-4.10.1/drivers/
media/pci/saa7164/
saa7164-bus.c

Function saa7164_bus_get() allows local users to cause a denial
of service (out-of-bounds array access) by changing a certain message
sequence-number value.

CVE- 2017- 9984
Linux-4.10.1/sound/
isa/msnd/msnd pinnacle.c

Function snd_msnd_interrupt() allows local users to cause a de-
nial of service (over-boundary access) by changing the value of a mes-
sage queue head pointer between two kernel reads of that value.

CVE-2017-9985
Linux-4.10.1/sound/
isa/msnd/msnd midi.c

Function snd_msndmidi_input_read() allows local users to
cause a denial of service (over-boundary access) by changing the value
of a message queue head pointer between two kernel reads of that value.

CVE-2017-9986
Linux-4.10.1/sound/
OSS/msnd pinnacle.c

Function intr() allows local users to cause a denial of service (over-
boundary access) by changing the value of a message queue head pointer
between two kernel reads of that value.

Conclusions
• Presented the first dedicated study to the double fetch problem in the I/O memory, which pro-

vides a new perspective to the double fetch problem by increasing the scope to include peripheral
devices.

• Proposed a static pattern-matching approach to identify hardware double fetches, which could an-
alyze all the driver code in one execution without relying on the corresponding hardware.

• Identified 361 hardware double fetches from Linux kernel-4.10.1, including 4 previously un-
known double-fetch vulnerabilities. We provided patches, and all the vulnerabilities have been
confirmed and fixed by the maintainers as a result of our report.

• Conducted a thorough investigation of the identified cases. The cases were categorized and ana-
lyzed with examples to discuss the possibility of causing bugs. We summarized findings based on
our investigation.

1A value is transmitted separately, though reading from the same I/O address, everytime gets a different section of it.
2Dedicated functions provided by the Linux kernel to access the I/O memory, which is the only way to get I/O memory data


