
Poster: Fuzzing IoT Firmware via Multi-stage Message
Generation

Bo Yu, Pengfei Wang, Tai Yue, Yong Tang
College of Computer, National University of Defense Technology

Changsha, China
{yubo0615,pfwang,yuetai17,ytang}@nudt.edu.cn

ABSTRACT
In this work, we present IoTHunter, the first grey-box fuzzer for
fuzzing stateful protocols in IoT firmware. IoTHunter addresses the
state scheduling problem based on amulti-stagemessage generation
mechanism on runtime monitoring of IoT firmware. We evaluate
IoTHunter with a set of real-world programs, and the result shows
that IoTHunter outperforms black-box fuzzer boofuzz, which has a
2.2x, 2.0x, and 2.5x increase for function coverage, block coverage,
and edge coverage, respectively. IoTHunter also found five new
vulnerabilities in the firmware of home router Mikrotik, which
have been reported to the vendor.

CCS CONCEPTS
• Security and privacy → Software security engineering.

KEYWORDS
Grey-box fuzzing; stateful protocol fuzzing; IoT firmware fuzzing

ACM Reference Format:
Bo Yu, PengfeiWang, Tai Yue, Yong Tang. 2019. Poster: Fuzzing IoT Firmware
via Multi-stage Message Generation. In 2019 ACM SIGSAC Conference on
Computer& Communications Security (CCS ’19), November 11–15, 2019, Lon-
don, United Kingdom. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3319535.3363247

1 INTRODUCTION
Nowadays, billions of IoT (Internet-of-Thing) devices are connected
to the Internet, and security flaws of these endpoints can cause risks
to privacy, savings, well-being, or even lives. IoT firmware uses lots
of stateful network protocol (e.g., ssl, smb, ftp, and bgp) to provide
powerful functions such as device management, message exchange,
and customized functionalities. However, owing to the complex
protocol design, time-to-deliver constraints, and insecure coding
practices, the vulnerable network protocol and service applications
in IoT firmware are prone to leave unprecedented attack surfaces
(e.g., the notorious Mirai IoT botnet). Thus, discovering and fixing
the vulnerabilities in IoT firmware is of vital significance.

Recent research proposes to detect vulnerability in IoT firmware
via fuzzing. However, fuzzing IoT firmware has to overcome three
challenges. (1) The complex protocol states. Network protocols in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6747-9/19/11.
https://doi.org/10.1145/3319535.3363247

IoT firmware are stateful, which have complex message interactions
and state transitions. The input space of a stateful protocol is in the
form of a message sequence. Thus, to fuzz a stateful protocol under
a certain state, we must set the target system to the desired state
in advance. Besides, the protocol state will be lost when sending a
mal-formated message. Hence, most black-box fuzzing tools (e.g.,
boofuzz [2] and IoTFuzzer [4]) could not effectively cover the state
trajectory and achieve poor automation. (2) Scalability for different
protocols. Current attempts of fuzzing IoT firmware are limited to
certain protocols, such as http [8], ssl [6], and vpn [5]. (3) Test case
validation. The network messages between clients and servers are
well constructed, and each received message has to be checked for
format validation, such as message length, protocol identification,
and checksum. Current mutation strategies (e.g., bit flipping) in
fuzzing are validation-blind, and most of the mutated test inputs fail
to pass the format checking and are rejected at an early stage. Thus,
discovering deep bugs by fuzzing IoT firmware is largely limited
by the current random-mutated message input [3][7][8].

In this work, we present IoTHunter, the first (to the best of our
knowledge) grey-box fuzzer for stateful protocols in IoT firmware.
During the runtime monitoring of IoT firmware, IoTHunter se-
quentially switches to protocol states according to the given state
sequence to perform a feedback-based state exploration and con-
duct coverage-guided grey-box fuzzing via multi-stage message
generation. In summary, we make the following contributions.
• We propose a novel technique called multi-stage message
generation to fuzz the stateful network protocol in multiple
process stages fully. Especially, our approach can fuzz known
state sufficiently and explore unknown states which are not
presented in a given state sequence.
• We implement a prototype tool called IoTHunter, which has
a high coverage of the stateful protocol input space, high
test case validation rate, and support multiple key protocols
(e.g., snmp, ftp, ssl, bgp, smb) in IoT firmware.
• We evaluate IoTHunter with a set of real-world IoT programs,
and the result shows that IoTHunter outperforms black-box
fuzzer boofuzz. We also discover five new vulnerabilities,
which have been reported to the vendor.

2 DESIGN AND IMPLEMENTATION
2.1 Message-state transition model
Considering a stateful protocol P with a state set S =< s0, s1, s2, ..., sn >
and message sequenceM = {Mi, j , 0 <= i, j <= n}, the state transi-
tion relations can be expressed with a directed graph G = (S,M ),
where s0 is the initial state of a service request. In a graph G, each
message typeMi, j denotes the message that can migrate from state
si to state sj . Especially, if j = 0, we callMi,0 an invalid message (i.e.,

https://doi.org/10.1145/3319535.3363247
https://doi.org/10.1145/3319535.3363247
https://doi.org/10.1145/3319535.3363247


s1 s2 sns0

M0,1 M1,2 M...

M1,0 M2,0 Mn,0

M0,0

...

Figure 1: Protocol state model driven by input message.

wrong format), which will cause the system to lose the current state
si and migrate to the initial state s0. Figure 1 shows a message-state
transition model that expresses the state transition relationship
driven by message sequenceM . The solid and dotted arrows denote
the valid and invalid type of messages, respectively. In the stateful
fuzzing process, the test cases are new messages generated by the
fuzzer. Whether a message is valid or invalid is determined by the
runtime state monitoring of IoT firmware. Hence, in nature, the
stateful fuzzing process is to find the boundary between the valid
and invalid regions of the input space.

2.2 Multi-stage Message Generation
Input. As Figure 2 shows, the input space consists of two-part: (1)
a state sequence S that describes the known states from protocol
specification, and a seed setM that include valid message in each
state; (2) the message format requirements comprising the basic
message constraints, such as message type, length field, concrete
version number, checksum field.

Workflow. First, we use a protocol-specific parser to extract
metadata by inspecting each message against format requirements.
Then, we schedule protocol states according to state sequence S ,
and then call the message mutation scheduling module to gener-
ate new test cases based on message seeds. After that, we check
test cases against message format requirements and updates the
corresponding field if any violation happens. Finally, we send the
message to a running target of IoT firmware to collect the execution
trace and message response.

Protocol state scheduling process. By considering the known
states in message sequence and unknown states which are not
presented, the protocol state scheduling process consists of two
parts: (1) The known state fuzzing: We start from the initial
state s0, which directly generates new messages based on message
seeds. Then we update the message format when any violation
against the format requirements occurs. After sending the new
message to target IoT firmware, the next state s1 will be achieved
if the new message is valid, and we collect the valid messageM0,1.
Otherwise, the current state will be lost and reset to s0. After a
period of fuzzing, we proceed to the next state if no new path
found. For the fuzzing of state si (i > 0) in each step, we first
need to check the current state, if it is not si-1, additional messages
Mi = M0,1+M1,2+ ...+Mi−2,i−1 is selected from the valid message
set and sent for scheduling current state to si -1. (2) The unknown
state exploration: Since most of the existing stateful protocols
contain a type field, we use an integer mutation policy to change
the message type value randomly and packs the message type and
in the generated message as a new test case. However, if we find a

state sequence S, seeds M

state fuzzermessage 
fuzzer

test case m

message format 
requirements

format
checker

execution
feedback

protocol-specific
parser

fuzzing engine

runtime monitoring
in IoT firmware 

emulator 

www
-ssl route ftp snmp smb

feedback

tese case

state and test case

Figure 2: Workflow of multi-stage message generation.

new state that not presented in state sequence S , it will be added to
the state sequence. After the whole fuzz process finishes, a valid
message set M = M0,1 + M1,2 + ... + Mn−1,n is got, which is the
whole input space of a stateful protocol.

Format Checking. During the fuzzing process, each message
is checked against protocol format requirements before sending
out. Based on the protocol-specific parser, the metadata of each
message is extracted and stored. Then, the metadata is checked for
preserving message validation. For example, the length of a new
message is re-computed and written to the length filed. Meanwhile,
the message type must be consistent with the current state.

2.3 Implementation
IoTHunter is implemented on top of AFL [1] and boofuzz [2], and
Avatar2 [7]. Two core fuzzing engines are included in IoTHunter, a
state fuzzer (implemented on top of boofuzz) that schedules pro-
tocol state and a message fuzzer (implemented on top of AFL )
that mutates messages smartly. To fuzz both protocol states and
messages together, IoTHunter schedules its two core fuzzers in
order. Especially, in order to keep the workflow of AFL intact mean-
while allow AFL to fuzz a target program in an IoT firmware, we
replace the user-mode with the state fuzzer. Other components of
IoTHunter include a firmware emulator based on Avatar2, a python-
based parser, and a format checker. IoTHunter initializes an Avatar2
target with a given firmware image, then calls the state fuzzer to
schedule the protocol state and notifies message fuzzer to perform a
random mutation. Besides, a monitoring module with new control
commands is added in emulator Avatar2 to support IoTHunter. The
current implementation of IoTHunter supports CPU architectures,
including x86, x86-64. Theoretically, it also supports mips and arm.

3 EVALUATION
Configuration. We use eight real-world IoT programs from home
router Mikrotik v6.38.4 x86 and NAS Synology v15284 x86-64 to
evaluate IoTHunter. The test programs cover key service protocols
(e.g., snmp, ftp, ssl, bgp, smb) that handle network requests and thus
are easily-reached targets for remote attacks. Same as the other



Table 1: Vulnerabilities found by IoTHunter.

ID Protocol Description

CVE-2018-
10070

ftp A buffer overflow caused by sending a crafted
FTP request with many ‘\0’ characters.

CVE-2019-
13074

ftp A denial of service caused by repeated service
request to exhaust all available memory.

CVE-2018-
7445

smb A buffer overflow caused by sending a NetBIOS
SMB message with request ID=0x14 or 0x81.

CVE-2019-
13964

snmp An assert failure caused by sending an snmp
GET message with extra-long pedding.

CVE-2019-
13606

snmp A denial of service caused by sending an snmp
GET message with extra-long pedding.

400

300

350

400

al
 P

at
hs routeros-smb

synology-smb

150

200

250

N
um

be
r o

f T
ot

a synology smb

routeros-ftp

synology-ftp

routeros-ssl

0

50

100 routeros-bgp

routeros-snmp

synology-snmp

0

s0 s2s1
12h 24h 36h

Figure 3: Fuzzing process of the stateful protocols.

researchers [6][5], we only fuzz the states in the handshake process
of each protocol. For example, the handshake process of protocol
ssl and smb includes three states s0, s1 and s2. Although snmp has
only one state, fuzzing snmp follows the workflow we proposed.
We fuzzed each protocol state for 12 hours (on a single core) and
repeated each 12 hours experiment 5 times for each test program
to reduce randomness in fuzzing. We ran our experiments on a
64-bit machine with 40 cores (2.8 GHz Intel Xeon E5- 2680 v2),
64GB of RAM, and Ubuntu 16.04 as server OS. The total hours of
our experiments are over 30 CPU days.

Findings. During the test, we found five new vulnerabilities
(listed in Table 1) from the home router Mikrotik v6.38.4 x86. When
we report these vulnerabilities to the vendor, the first three were
also discovered by other researchers, even though, the PoC we
provided is different from the other reporters (e.g., the request ID
0x81 for CVE-2018-7445).

Stateful fuzzing. Figure 3 illustrates the stateful fuzzing process.
The horizontal axis represents the fuzzing time, while the vertical
axis represents the number of paths explored. Each line shows the
fuzzing process of one protocol. We can see that the total paths
increase dramatically at the beginning of each fuzzing state and
remain stable at the end of each fuzzing state, which implies that
each protocol is fuzzed sufficiently by state scheduling mechanism.

Comparison. We compare IoTHunter with black-box fuzzer
boofuzz [2] with three protocols. The comparison is conducted

0 7

0 4

0.5

0.6

0.7

ag
e

IoTHunter/
Checking

0.1

0.2

0.3

0.4

C
ov

er
a

IoTHunter/
NoChecking

boofuzz

0

routeros smb synology smb routeros sslrouteros-smb synology-smb routeros-ssl

Figure 4: Comparison result with boofuzz.

from three aspects: function coverage, block coverage, and edge
coverage. As Figure 4 shows, when fuzzing stateful protocols, Io-
THunter outperforms boofuzz, which has a 2.2x, 2.0x, 2.5x increase
for function coverage, block coverage, and edge coverage, respec-
tively. We also compare IoTHunter with a version without format
checking. The result shows that the format checking mechanism in
IoTHunter can averagely increase 1.7x, 1.4x, 1.6x for function cov-
erage, block coverage, and edge coverage, respectively. The results
imply that coverage-guided grey-box fuzzing performs better than
black-box fuzzing when fuzzing stateful network protocols.

4 CONCLUSION
In this poster, we present the first grey-box fuzzer, IoTHunter, to
fuzz stateful protocols in IoT firmware. Based on a state transition
model, we propose a novel technique called multi-stage message
generation to fuzz the stateful network protocol in multiple process
stages fully. The experiment shows that IoTHunter outperforms
black-box fuzzer boofuzz in function coverage, block coverage,
and edge coverage. We also found five new vulnerabilities in the
firmware of Mikrotik, which have been reported to the vendor.

ACKNOWLEDGEMENT
The work was supported by the National Natural Science Founda-
tion of China (61902412, 61902416) and the Natural Science Foun-
dation of Hunan Province (2019JJ50729).

REFERENCES
[1] 2019. American fuzzy lop. [Online]. http://lcamtuf.coredump.cx/afl/.
[2] 2019. Boofuzz. [Online]. https://boofuzz.readthedocs.io/en/latest/.
[3] Andrea Biondo. 2018. Coverage-guided fuzzing of embedded firmware with

avatar2. [Online]. https://siagas.math.unipd.it/siagas/getTesi.php?id=2030.
[4] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, Xi-

aoFengWang,Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang.
2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based
Fuzzing. In NDSS.

[5] Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. 2018. Inferring OpenVPN State
Machines Using Protocol State Fuzzing. In 2018 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, 11–19.

[6] Joeri De Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS Implementations.
In 24th USENIX Security Symposium (USENIX Security 15). 193–206.

[7] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar 2: A multi-target orchestration platform. InWorkshop on Binary Analysis
Research (colocated with NDSS Symposium)(February 2018), BAR, Vol. 18.

[8] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware
via Augmented Process Emulation. In 28th USENIX Security Symposium (USENIX
Security 19). 1099–1114.

http://lcamtuf.coredump.cx/afl/
https://boofuzz.readthedocs.io/en/latest/
https://siagas.math.unipd.it/siagas/getTesi.php?id=2030

	Abstract
	1 Introduction
	2 Design and implementation
	2.1 Message-state transition model
	2.2 Multi-stage Message Generation
	2.3 Implementation

	3 Evaluation
	4 Conclusion
	References

